

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã==
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release, distribution unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

NPS-AM-08-036

bñÅÉêéí=Ñêçã=íÜÉ==

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

ÑáÑíÜ=^ååì~ä=^Åèìáëáíáçå=

oÉëÉ~êÅÜ=póãéçëáìã=

EMERGING ISSUES IN THE ACQUISITION OF OPEN SOURCE
SOFTWARE WITHIN THE US DEPARTMENT OF DEFENSE

Published: 23 April 2008

by

Dr. Walt Scacchi and Dr. Thomas Alspaugh

5th Annual Acquisition Research Symposium
of the Naval Postgraduate School:

Acquisition Research:
Creating Synergy for Informed Change

May 14-15, 2008

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
23 APR 2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
Emerging Issues in the Acquisition of Open Source Software Within the
US Department of Defense

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California, Irvine,Institute for Software
Research,Irvine,CA,92697-3455

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
5th Annual Acquisition Research Symposium: Creating Synergy for Informed Change, May 14-15, 2008 in
Monterey, CA

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

37

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã==
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented at the symposium was supported by the Acquisition Chair of
the Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

Conference Website:
www.researchsymposium.org

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- i -
=

=

Proceedings of the Annual Acquisition Research Program

The following article is taken as an excerpt from the proceedings of the annual

Acquisition Research Program. This annual event showcases the research projects

funded through the Acquisition Research Program at the Graduate School of Business

and Public Policy at the Naval Postgraduate School. Featuring keynote speakers,

plenary panels, multiple panel sessions, a student research poster show and social

events, the Annual Acquisition Research Symposium offers a candid environment

where high-ranking Department of Defense (DoD) officials, industry officials,

accomplished faculty and military students are encouraged to collaborate on finding

applicable solutions to the challenges facing acquisition policies and processes within

the DoD today. By jointly and publicly questioning the norms of industry and academia,

the resulting research benefits from myriad perspectives and collaborations which can

identify better solutions and practices in acquisition, contract, financial, logistics and

program management.

For further information regarding the Acquisition Research Program, electronic

copies of additional research, or to learn more about becoming a sponsor, please visit

our program website at:

www.acquistionresearch.org

For further information on or to register for the next Acquisition Research

Symposium during the third week of May, please visit our conference website at:

www.researchsymposium.org

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- ii -
=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 230 -
=

=

Emerging Issues in the Acquisition of Open Source Software
within the US Department of Defense

Presenter: Walt Scacchi is a senior research scientist and research faculty member at the Institute for
Software Research, University of California, Irvine. He received a PhD in Information and Computer
Science from UC Irvine in 1981. From 1981-1998, he was on the faculty at the University of Southern
California. In 1999, he joined the Institute for Software Research at UC Irvine. He has published more
than 150 research papers and has directed 45 externally funded research projects. In 2007, he served as
General Chair of the 3rd IFIP International Conference on Open Source Systems (OSS2007), Limerick, IE.

Walt Scacchi
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-34 55 USA
Phone: 1-949-824-4130
Fax: 1-949-824-1715
E-mail: wscacchi@ics.uci.edu

Author: Thomas Alspaugh is an Assistant Professor of Informatics in the Donald Bren School of
Information and Computer Sciences, University of California, Irvine. He received his PhD in Computer
Science from North Carolina State University in 2002. His research interests are in software engineering
and focus on informal and narrative models of software at the requirements level. Before completing his
PhD, he worked as a software developer, team lead, and manager at several companies (including IBM
and Data General) and as a computer scientist at the Naval Research Laboratory on the Software Cost
Reduction project, also known as the A-7E project.

Thomas A. Alspaugh
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-34 55 USA
Phone: 1-949-824-4130
Fax: 1-949-824-1715
E-mail: alspaugh@ics.uci.edu

Abstract
In the past five or so years, it has become clear that the US Air Force, Army, and Navy

have all committed to a strategy of acquiring software-intensive systems that require or utilize
an “open architecture” (OA) and “open technology” (OT) that may incorporate OSS technology
or OSS development processes. There are many perceived benefits and anticipated cost
savings associated with an OA strategy. However, the challenge for acquisition program
managers is how to realize the savings and benefits through requirements that can be brought
into system development practice. As such, the central problem we examine in this paper is to
identify principles of software architecture and OSS copyright licenses that facilitate or inhibit the
success of an OA strategy when OSS and open APIs are required or otherwise employed. By
examining and analyzing this problem, we can begin to identify additional requirements that may
be needed to fulfill an OA strategy during program acquisition.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 231 -
=

=

Introduction
Interest within the US Department of Defense (DoD) and military services in free and

open source software (OSS) first appeared in the past five or so years (Bollinger, 2003). More
recently, it has become clear that the US Air Force, Army, and Navy have committed to a
strategy of acquiring software-intensive systems across the board that require or utilize an
“open architecture” (OA) and “open technology” (OT), which may incorporate OSS technology
or OSS development processes (Herz & Scott, 2007). Why?

According to Riechers (2007), the Air Force sees several factors within its software-
intensive systems: there is increasing complexity of the software (code) itself; the Air Force may
be “held hostage” by proprietary legacy components; it seeks more timely delivery of new
solutions, and it is aware that acquisitions and requirements take too long. So, the Air Force is
moving towards an OT development approach that embraces open standards, open data, open
program interfaces, best-of-breed OSS, and OSS development practices.

According to Brig. Gen. Justice (2007, March; 2007, December), the Army seeks to
move away from closed source software, expensive software upgrades, vendor lock-in, and
broadly exploited security weaknesses. Subsequently, the Army seeks to adopt OSS because it
may realize direct cost savings (compared to proprietary closed source software), gain access
to source code in order to better develop domain and IT expertise, enable the transition to Web
2.0 technologies, and enable rapid injection of innovative concepts from diverse R&D/IT
communities into systems for tactical command and control (C3T), future combat systems,
enterprise information systems, and others (Starett, 2007).

Last, according to Guertin (2007), the Navy seeks to mitigate the spiraling costs of
weapon systems through adoption of OA (US Navy, 2006), as well as the adoption of open
business models for the acquisition and spiral development of new systems. This may,
therefore, necessitate better alignment of the system requirements and program acquisition
communities, as well as better alignment of industry and academic partners who engage in
software-focused research and development activities with DoD support.

The central problem we examine and explain in this paper is the identification of
principles of software architecture and OSS copyright licenses that facilitate or inhibit the
success of the OA strategy when OSS and open APIs are required or otherwise employed. This
is the knowledge we seek to develop and deliver. Without such knowledge, program acquisition
managers and Program Executive Offices are unlikely to acquire software-intensive systems
that result in an OA that is clean, robust, transparent and extensible. This may frustrate the
ability of program managers or program offices to realize faster, better, and less expensive
software system acquisition, development, and post-deployment support.

On a broader scale, this paper seeks to explore and answer the following kinds of
research questions: How does the use of OSS components and open APIs (a) facilitate or (b)
inhibit the ability to develop and deliver an OA software system? How do the requirements for
OA affect system acquisition? How do alternative OSS licenses facilitate or inhibit the
development of OA systems? How does the use of OSS components and open APIs manifest
requirements that (a) facilitate, or (b) inhibit program acquisition?

Last, this paper may help establish a foundation for how to analyze and evaluate
dependencies that might arise when PMs seek to develop software systems that should
embody an OA—especially when different types of OSS components or OSS component

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 232 -
=

=

licenses are being considered for integration. Finally, we believe there are new ways for
determining requirements for how best to develop software systems with OSS (Scacchi, 2002)
that can interact with acquisition processes (Choi & Scacchi, 2001) in ways that are not
apparent within current public perspectives for OA, based on OSS (Guertin, 2007; Justice,
2007, March; 2007, December; Riechers, 2007).

In the remainder of this paper, we examine what makes achieving OA and OT difficult
from a technical and program management/acquisition perspective, with respect to
understanding what OA incorporating modern OSS entails from a software architecture
standpoint, software licensing regimes, and how/where they interact. We start by providing
additional background on “openness.” We then add a description and analysis of open software
architecture concepts and of open source software licenses. This gives rise to a discussion that
identifies new requirements that must be addressed by program managers in acquisitions that
are intended to realize an OA software system. We then close with a review of the conclusions
that follow.

Background
Across the three military services within the DoD, OA means different things and is seen

as the basis for realizing different kinds of outcomes. Thus, it is unclear whether the acquisition
of a software system that is required to incorporate an OA as well as utilize OSS technology and
development processes for one military service will realize the same kinds of benefits
anticipated for OA-based systems by another service (Wheeler, 2007). Somehow, DoD
acquisition program managers must make sense of or reconcile such differences in
expectations and outcomes from OA strategies across the DoD. Yet, there is little explicit
guidance or reliance on systematic empirical studies for how best to develop, deploy, and
sustain complex software-intensive military systems in the different OA and OSS presentations
and documents that have been disseminated (Weathersby, 2007). Instead, what mostly exists
are narratives that serve to provide and promise the potential of OA and OSS without
consideration of what socio-technical challenges may lie ahead in realizing OT, OA, and OSS
strategies.

In characterizing the challenges facing acquisition of OA and OSS systems, we have
found it helpful to compare the new property of “Openness” with the familiar property
“Correctness”; we summarize this with the maxim “open is the new correct.”

Acquisition officers are familiar with the challenges of acquiring systems that meet the
necessary requirements with regard to correct behavior. The correctness of the overall system
depends on the correctness of its components and how they are interconnected; correctness is
a relative quality, in that a system may meet its behavioral requirements to a greater or lesser
degree, but almost by definition, a system is never completely correct, and its degree of
correctness cannot be definitely established in a finite time. A lack of correctness has an effect
when that part of the system is executed (and the correctness of a system in meeting its
requirements is determined) by engineers and the system’s users through testing it and using it.
Openness is both similar to and different from correctness, however. We argue that the
openness of a system depends, like correctness, on the system’s components: how they are
interconnected and how they are configured into an overall software system architecture.
Unlike correctness, however, a system may be completely open, or may fail to be open in
various ways. Because the software elements that define a system are finite and enumerable,
its openness can, in principle, be determined. Also unlike correctness, a system is either open
or not open even when it is not operating, and DoD may pay the consequences of a lack of

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 233 -
=

=

openness (in the form of license fees) before the system is ever used or even if it is never used.
Finally, unlike correctness, openness may—ultimately—be the province of lawyers and policy
makers, not engineers or users.

We believe that a primary challenge is how to determine whether a system, composed of
sub-systems and components—each with specific OSS or proprietary licenses and integrated in
the system’s planned configuration—is or is not open, and what license(s) apply to the
configured system as a whole. This challenge comprises not only evaluating an existing system,
but also planning for a proposed system to ensure that the result is “open” under the desired
definition, with only the acceptable licenses applying. It is also important to understand which
licenses are acceptable in this context. Because there are a range of licenses (each of which
may affect a system in a different way), and due to the number of various kinds of OSS-related
components and ways of combining them (which have an effect on the licensing issue), the first
step in this process is to understand types of software elements that constitute a software
architecture, and the types of licenses that may encumber these elements or their overall
configuration.

OA seems to simply suggest software system architectures incorporating OSS
components and open application program interfaces (APIs). But not all software system
architectures incorporating OSS components and open APIs will produce OA, since OA
depends on: (a) how/why OSS and open APIs are located within the system architecture, (b)
how OSS and open APIs are implemented, embedded, or interconnected, (c) whether the
copyright (Intellectual Property) licenses assigned to different OSS components encumber
all/part of a software system's architecture into which they are integrated, and (d) whether many
alternative architectural configurations and APIs may or may not produce an OA (Alspaugh &
Antón, 2007; Diallo, Sim, & Alspaugh, 2007; Scacchi, 2007). Subsequently, we believe this can
lead to complex situations: if program acquisition stipulates a software-intensive system with an
OA and OSS, then the resulting software system may or may not embody an OA. This can
occur when the architectural design of a system constrains system requirements—that is, which
requirements can be satisfied by a given system architecture when requirements stipulate
specific types or instances of OSS (e.g., Web browsers and content management servers) to be
employed, or what architecture style (Bass, Clements & Kazman, 2003) is implied by given
system requirements.

Thus, given the goal of realizing an OA and open technology strategy (Herz & Scott,
2007), together with the use of OSS components and open APIs, it is unclear how to best align
program acquisition, system requirements, software architectures, and OSS license regimes.

Understanding Open Software Architecture Concepts
A system intended to embody an open architecture using open software technologies

like OSS and APIs does not clearly indicate which possible mix of software elements may be
configured into it. To help explain this, we first identify the types of software elements included
in common software architectures, whether they are open or closed (Bass et al., 2003).

 Software source code components—These include the computer programs that
direct the intended computation, calculation, control flow, and data manipulation.
These are programs for which the source code is open for access, review,
modification, and possible redistribution by their developers. However, there are
currently at least four forms of computer programs.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 234 -
=

=

■ standalone programs—These are the computer programs that we have long
understood, often as isolated systems or monolithic applications that accept data
inputs, manipulate and transform this data, and produce outputs (calculated
results, information displays, emit control signals to devices, etc.) under user or
system administered control.

■ libraries, frameworks, or middleware—These are collections of software
functions, no one of which is typically a standalone program. Such software is
often expected to be routinely reused in many different systems or applications.
This software may also be used to provide a layer of abstraction that hides
source code implementation details so as to improve subsequent software
portability, or to hide alternative software implementations.

■ inter-application script code—This software is used to combine independent
programs by associating their respective inputs, outputs, and control variables.
This software is sometimes called “glue code,” which suggests its primary use is
to connect programs through the use of “pipes” and/or “filters” that control or
modulate the directed flow of information between the associated programs.
Such scripts may be as short as a single line of code, but on the other hand, they
can be as large as thousands (even hundreds of thousands) of source lines of
code.

■ intra-application script code—This software is similar in spirit to inter-application
script code, except the focus is on organizing, controlling, and manipulating input
and output data/presentations from remote Web services/repositories for view
and end-user interaction at the human-computer interface. Popular Web
application systems like the Firefox Web browser may be scripted to provide
animated user interfaces coded in languages like Javascript, ActionScript, or PhP
to create Rich Internet Applications (Feldt, 2007) or “mashups” (Nelson &
Churchill, 2006). Such scripts may be as short as a single line of code, but on the
other hand, they can be as large as thousands (even tens of thousands) of
source lines of code. However, custom intra-application software languages may
also be designed to create domain-specific languages (e.g., XUL for Firefox Web
browser (Feldt, 2007)) for rapid construction of persistent/disposable software
functions (or macros), which enable increased software development productivity
or end-user programming.

 Executable components—These are programs for which the software is in binary
form, and its source code may not be open for access, review, modification, and
possible redistribution. Executable binaries are rarely treated as open since they may
also be viewed as “derived works” (Rosen, 2005) that result from the compilation or
interpretation of software source code that may not be available, or may be
proprietary. Executable components are widespread and common in every
computing system, even in OSS systems. However, executable components may
also only become part of a system during its execution through dynamic (or run-time)
linking. Finally, though their binary form makes them available for execution through
external linkage to some other program, such form also makes figuring out what they
do very difficult, if they have little/no documentation available.

 Application program interfaces/APIs—These software interfaces are generally not
programs that can be executed, but they enable software system developers to
access their functionality without direct access to their source code. The availability
of externally visible and accessible APIs to which independently developed

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 235 -
=

=

components can be connected is the minimum required to form an “open system”
(Meyers & Obendorf, 2001). Often, the APIs are treated as if they enable direct
access to the otherwise hidden software, but a closed software system may employ
a layer of abstract APIs as “shims” that better align multiple program interfaces or
security barriers that seek to protect disclosure of private or proprietary information.
Such information may include the details of actual software function interfaces (which
may be designated as “trade secrets”) or hidden software functions that may only be
known to software developers with secure, restricted code access.

 Software connectors—These may be software either from libraries, frameworks, or
application script code whose intended purpose is to provide a standard or reusable
way of associating programs, data repositories, or remote services through common
interfaces. These may include software technologies that constitute a “software bus”
for plugging in independent software modules (programs or functions), network
protocols that enable and control the flow of data between remote programs across a
LAN or Internet, or even a database management system (DBMS) that is used to
enable data sharing and storage among programs connected to the DBMS. The High
Level Architecture (HLA) is an example of a software connector scheme (Kuhl,
Weatherly & Dahmann, 2000), as are CORBA, Microsoft's .NET, and Enterprise Java
Beans.

 Configured system or sub-system—These are software systems built to conform to
an explicit architectural specification. They include software source code/binary
components, APIs, and connectors that are organized in a way that may conform to
a known “architectural style” such as the Representational State Transfer (Fielding &
Taylor, 2002) for Web-based client-server applications or may represent an original
or ad hoc architectural pattern (Bass et al., 2003). All the software elements, and
how they are arranged and interlinked, can all be specified, analyzed, and
documented using an Architecture Description Language (Bass et al., 2003) and
ADL-based support tools. Beyond this, any or all of the software elements in a
configured system or sub-system may or may not be OSS. In contrast to a derived
work, a configured system or sub-system is considered as a “collective work” and as
such is subject to its own copyright and license protection as intellectual property,
whether open or closed (Rosen, 2005; St. Laurent, 2004). However, such intellectual
property declaration cannot employ a license regime on the overall system that
supercedes or controverts the license protections/obligations of the individual
software elements that constitute the configured system or sub-system.

Figure 1 provides an overall view of a hypothetical software architecture for a configured
system that includes and identifies each of the software elements above. It also includes open
source (e.g., Gnome Evolution) and closed source software (WordPerfect) components. In
simple terms, the configured system consists of software components (grey boxes in the figure)
that include a Mozilla Web browser, Gnome Evolution e-mail client, and WordPerfect word
processor that run on a Linux operating system that can access file, print, and other remote
networked servers (e.g., Apache Web server). These components are interrelated through a set
of software connectors (ellipses in the figure) that connect the interfaces of software
components (small white boxes attached to a component) that are linked together. Modern
enterprise systems or command and control systems will generally have more complex
architectures and a more diverse mix of software components than shown in the figure here. As
we examine next, this simple architecture raises a number of OSS licensing issues that mitigate
the extent of openness that is realized in a configured OA.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 236 -
=

=

Understanding Open Software Licenses
A particularly knotty challenge is the problem of licenses in OSS and OA. There are a

number of different OSS licenses, each with different rights and obligations attached to software
components that bear it. External sources are available that describe and explain the many
different licenses now in use with OSS (OSI, 2008; Rosen, 2005; St. Laurent, 2004). Thus, we
will not delve into the details or variations among the many licenses, except to note a few key
properties that should be recognized as potentially impacting the openness of a configured
software system, and therefore, whether it can realize an OA.

The GNU General Public License (GPL), the most widely used OSS license,
implements a strong copyleft, requiring that the software source code be distributed and that
any modified versions also be licensed under GPL (Rosen, 2005; St. Laurent, 2004). The
GPL, along with some other OSS licenses like the Mozilla Public License (MPL), and others
(CPL, OSL (OSI, 2008; Rosen, 2005)), are identified as “reciprocal” licenses that in some
way transfer license obligations to derivative software systems. A software system
component or connector based on existing OSS inherits the obligations or restrictions of the
originating OSS. In contrast, an academic freedom license such as the BSD, MIT, or Apache
license permits derivative software works to be incorporated into a proprietary, closed-
source product (Rosen, 2005; St. Laurent, 2004). Academic licenses are identified as
“unrestrictive” so that software components or connectors derived from OSS covered by an
academic freedom license need not adhere to the obligations of the originating OSS.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 237 -
=

=

Note: Components, connectors, and overall system configuration may be subject to different software
licenses.

Figure 1. Software Components, Connectors, Interfaces Arranged in an Overall
Software System Configuration

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 238 -
=

=

What license applies to an OA system containing some GPL components with a
reciprocal license and some BSD components with unrestrictive license, or perhaps even some
proprietary software license? In Figure 1, we see at least three software components that have
different software licenses: the Mozilla Web browser (subject to the MPL), Gnome Evolution e-
mail client (subject to the GPL), and WordPerfect word processor (subject to a proprietary
software license). The license problem is further complicated by components designed to
operate on license requirements. For example, a software shim may be a library function,
abstract interface, or script code designed to serve as a connector between two applications
that have different licenses, so that neither application’s license is violated, and neither
application is “infected” by the restrictions or obligations of the other’s license. In this regard, a
software connector is a configured system (or OA) element specifically designed to modulate
the license requirements imposed on the components it connects. Figure 1 follows the links
between the Mozilla Web browser, Gnome Evolution, and WordPerfect. The requirements
imposed by a component’s license are affected by the architectural structure of the system
containing it and vice versa. Figures 2a and 2b provide suggested mappings of license
obligations that can constrain a configured software system derived from OSS components and
connectors covered by a specific OSS license.

The question of what license covers a specific configured system is difficult to answer,
especially if the system or sub-system is already in operation (Kazman & Carrière, 1999). We
offer the following considerations to clarify this. For example, a Mozilla/Firefox Web browser
covered by the MPL may download and run intra-application script code that is covered by a
different license. If this script code is only invoked via dynamic run-time linking (or invocation),
then there is no transfer of license restrictions or obligations. However, if the script code is
integrated into the source code of the Web browser as persistent part of an application, then it
could be viewed as a configured sub-system that may need to be accessed for license transfer
implications. Another kind of example can be anticipated with application programs (like Web
browsers, e-mail clients, and word processors) that employ Rich Internet Applications or
mashups that entail the use of content (e.g., textual character fonts or geographic maps) that is
subject to copyright protection—if the content is embedded in and bundled with the scripted
application sub-system.

Next, as software system configuration (or OA) is intended to be adapted to incorporate
new innovative software technologies that are not yet at hand, we recognize that these OSS-
based system configurations will evolve over time at ever-increasing rates (Scacchi, 2007);
components will be replaced, and inter-component connections will be rewired or remediated
with new connector types. As such, the sustaining the openness of a configured software
system will become part of ongoing system support, analysis, and validation. This, in turn, may
require ADLs to include OSS licensing properties on components, connectors, and overall
system configuration, as well as in appropriate analysis tools (Bass et al., 2003).

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 239 -
=

=

Figure 2a. Mapping Reciprocal OSS Licenses to Derivative Works

(Rosen, 2005)

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 240 -
=

=

Note: Footnotes in original (Rosen, 2005, p. 251).

Figure 2b. Mapping Unrestrictive Academic to Reciprocal OSS Licenses

Moving forward, analyses of OSS licenses by intellectual property lawyers may suggest
a way out of the current OSS licensing/relicensing mess. Note, we are not lawyers, so we are
not offering any legal advice. Feel free to consult legal counsel if or when appropriate for
guidance on license interpretation or enforcement conditions. However, we offer some
encouraging words. Rosen (2005, p. 252) observes OSS license incompatibilities can prevent
OSS from being freely used and combined. The multiplicity of such licenses only makes the
problem worse (review the tables in Figure 2a and 2b). Copyright law and contract law which
cover the interpretation and enforcement of OSS licenses is such that OSS developers or
distributors (e.g., Defense contractors) cannot simply relicense copyright protected OSS unless
they have permission to do so. This, in turn, may mitigate some requirements shaping the
development and deployment of military software applications that are suppose to embody an
OA.

Terms and conditions for reciprocity obligations in licenses like the GPL and others apply
to OSS that are modified and redistributed and not to software that may be modified but not
distributed outside of the organization. Also, this raises the questions of what constitutes
“distribution” or “redistribution” for a government organization that acquires access rights to all

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 241 -
=

=

software and data developed under contract. Similarly, for government employees whose work
is not protected by copyright (and thus may enter into the public domain), this may pose new
opportunities for adhering to or working around OSS license restrictions or obligations.

Finally, as Rosen (2005, p. 253) observes, by merely aggregating (or configuring)
software from different sources and treating such software as black boxes (e.g., no intra-
application scripting allowed and/or employ dynamic run-time linkage), it is possible to
technically avoid creation of derivative works that inherit the license restrictions or obligations of
the involved software elements. Subsequently, Rosen finds that OSS license incompatibilities
are inconveniences rather than barriers, and ultimately, one can get around almost all licensing
restrictions by being sufficiently creative and inventive. Thus, there is a need to providing
guidance to program acquisition officers, Program Executive Offices, and Defense contractors
for how to specify requirements for military software applications that best achieve a cost-
effective level of openness, which can enable the maximum possible benefits anticipated. But,
without explicit guidance or guidelines, we cannot assume that OA will just happen because of
the use of OSS elements and open systems APIs.

With this in mind, we outline some initial guidelines for such requirements.

Discussion
The relationships among open technology, open architecture, open source software

requirements, and program acquisition is poorly understood. We can call such a view of OSS:
(a) product oriented. Alternatively, we can view OSS as: (b) primarily a set of development
processes, work practices, project community activities (code sharing, review, modification,
redistribution), and multi-project software ecosystem that produce OSS systems and
components. This view of OSS as an integrated web of people, processes, and organizations
(including project teams operating as virtual organizations (Noll & Scacchi, 1999; Crowston &
Scozzi, 2002)) is production oriented (including production processes, production organizations,
production people, and governance over software production (Scacchi, 2007; Scacchi, Feller, et
al., 2006; Scacchi & Jensen, 2008)). The requirements for (a) are not the same as for (b), and
program acquisition targeting (a) may fail to realize the benefits, capabilities, or constraints
engendered by (b), and vice versa. As such, there is need to understand how to identify an
optimal mix of OSS within OA as both products and production processes, practices, community
activities, and multi-project (or multi-organization) software ecosystems.

The success of the DoD’s OA and OSS programs in achieving the positive qualities
associated with OSS depends on the socio-technical context in which a system is developed
and used. The stakeholders and users of an OSS system typically include the developers of
that system; they know its goals and requirements implicitly and can adapt and evolve the
system to follow their understanding of the context in which it is used. If the DoD is to achieve
quick response, rapid adaptation, and context-appropriate use of OSS, it may require a
representative group of the personnel who use and adapt it to their needs be OSS developers
for that system.

Following our analysis above, it appears there are a new set of requirements are
emerging that will need to be addressed in any acquisition of a software-intensive system that is
stipulated to employ an OA that accommodates OSS components or connectors. PMs that
identify specific requirements for a given program acquisition or system development contract
can benefit from consideration of the following guidelines for how best to realize an OA:

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 242 -
=

=

 Determining how much openness is required or desired.

 Identifying guidelines and incentives for software development contractors that
encourage them to develop, provide, and distribute/deploy OA systems with OSS
components, connectors, and configuration that minimize conflicting OSS license
obligations.

 Determining the restrictions, if any, that apply to the OSS licenses used by different
software system components, connectors, or configurations within an OA system.

 Identifying alternative OSS component, connector, or configuration candidates that
may satisfy a specified, overall system architecture.

 Determining scenarios that help reveal whether there are OSS licensing conflicts for
a given set of OSS components, connectors, or configuration.

 Identifying and analyzing any OSS licensing obligations that must be satisfied for the
resulting system to be available for redistribution.

 Identifying and validating OSS license conformance criteria for configured systems
intended for redistribution.

Further elaboration on these guidelines is subject to additional research, application, and
refinement. However, they do provide a useful starting point for discussion, debate, and action
in program acquisition.

Conclusions
The relationships among open technology, open architecture, open source software

requirements, and program acquisition is poorly understood. In recent OA presentations, OSS is
viewed as primarily a source for low-cost/free software systems or software components. Thus,
given the goal of realizing an OA and open technology strategy (Herz & Scott, 2007), together
with the use of OSS components and open APIs, it is unclear how to best align program
acquisition, system requirements, software architectures, and OSS license regimes.
Subsequently, the central problem we examined in this paper was how to identify principles of
software architecture and OSS copyright licenses that facilitate or inhibit the success of an OA
strategy when OSS and open APIs are required or otherwise employed.

Consideration of emerging issues in the acquisition of OSS within the US Department of
Defense is currently an important problem for acquisition research. The goal of this paper is to
help establish a foundation for how to analyze and evaluate dependencies that might arise
when one is seeking to develop software systems that should embody an OA and when
different types of OSS components or OSS component licenses are being considered for
integration.

List of References
Alspaugh, T.A., & Antón, A.I., (2007). Scenario support for effective requirements. Information and

Software Technology, 50(3), 198-220.

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice (2nd ed.), New York:
Addison-Wesley Professional.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 243 -
=

=

Bollinger, T. (2003, January 2). Use of free and open-source software (FOSS) in the US Department
of Defense. The MITRE Corporation. Retrieved March 2008, from
http://www.terrybollinger.com/dodfoss/dodfoss_html/index.html

Choi, J.S., & Scacchi, W. (2001, December 15). Modeling and simulating software acquisition process
architectures. Journal of Systems and Software, 59(3), 343-354.

Crowston, K., & Scozzi, B. (2002). Open source software projects as virtual organizations. IEEE
Proceedings—Software, 149(1), 3-17.

Diallo, M., Sim, S.E., & Alspaugh, T.A. (2007). The mythical requirements-architecture gap. Submitted
to the 2007 European Software Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE).

Feldt, K. (2007). Programming Firefox: Building rich internet applications with XUL. Sebastopol, CA:
O'Reilly Press.

Fielding, R., & Taylor, R.N. (2002). Principled design of the modern web architecture. ACM
Transactions Internet Technology, 2(2), 115-150.

Guertin, N. (Director, Open Architecture, Program Executive Office IWS 7B). (2007, March 14). Naval
open architecture: Open architecture and open source in DOD. Remarks delivered at “Open
Source—Open Standards—Open Architecture,” Association for Enterprise Integration
Symposium, Arlington, VA.

Herz, J.C., & Scott, J. (2007, June). COTR warriors: Open technologies and the business of war. The
DoD Software Tech News, 10(2), 3-6. Retrieved March 2008, from
https://www.softwaretechnews.com/stn_view.php?stn_id=42

Justice, N., Brig. Gen., Program Executive Office C3T. (2007, March 14). Open source software
challenge: Delivering warfighter value. Remarks delivered at “Open Source—Open
Standards—Open Architecture,” Association for Enterprise Integration Symposium, Arlington,
VA.

Justice, N., Brig. Gen., Program Executive Office C3T. (2007, December 12). Deploying open
technologies and architectures within military systems. Remarks delivered at 3rd DoD Open
Conference, Deployment of Open Technologies and Architectures within Military Systems,
Association for Enterprise Integration Symposium, Arlington, VA.

Kazman, R., & Carrière, J. (1999). Playing detective: Reconstructing software architecture from
available evidence. Journal of Automated Software Engineering, 6(2), 107-138.

Kuhl, F., Weatherly, R., & Dahmann, J. (2000). Creating computer simulation systems: An introduction
to the high level architecture. Upper Saddle River, NJ: Prentice-Hall PTR.

Meyers, B.C., & Obendorf, P. (2001). Managing software acquisition: Open systems and COTS
products. New York: Addison-Wesley.
Nelson, L., & Churchill, E.F. (2006, September). Repurposing: Techniques for reuse and
integration of interactive services. In Proceedings of the 2006 IEEE International Conference
of Information Reuse and Integration. Los Alamitos, CA: IEEE.

Noll, J., & Scacchi, W. (1999, February). Supporting software development in virtual enterprises.
Digital Information, 1(4).

OSI. (2008). The open source initiative. Retrieved March 2008, from http://www.opensource.org/

Riechers, C., Principal Deputy, Asst. Sect. of the Air Force, Acquisition. (2007, March 14). The role of
open technology in improving USAF software acquisition. Remarks delivered at “Open
Source—Open Standards—Open Architecture,” Association for Enterprise Integration
Symposium, Arlington, VA.

Rosen, L. (2005). Open source licensing: Software freedom and intellectual property law. Upper
Saddle River, NJ: Prentice-Hall PTR. Retrieved from http://www.rosenlaw.com/oslbook.htm

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 244 -
=

=

Scacchi, W. (2002, February). Understanding the requirements for developing open source software
systems, IEE Proceedings—Software, 149(1), 24-39.

Scacchi, W. (2007). Free/Open source software development: Recent research results and methods.
In M. Zelkowitz (Ed.), Advances in Computers, 69, 243-295.

Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., & Lakhani, K. (2006, March/April). Understanding
free/open source software development processes. Software Process—Improvement and
Practice, 11(2), 95-105.

Scacchi, W., & Jensen, C. (2008). Governance in open source software development projects:
Towards a model for network-centric edge organizations. Remarks delivered at the 13th
International Command and Control Research and Technology Symposium, Bellevue, WA. To
appear in June.

Starrett, E. (2007, May). Software acquisition in the army. Crosstalk: The Journal of Defense Software
Engineering, 4-8. Retrieved March 2008, from http://stsc.hill.af.mil/crosstalk

St. Laurent, A.M. (2004). Understanding open source and free software licensing. Sebastopol, CA:
O'Reilly Press.

US Navy. (2006). Naval OA strategy. Retrieved March 2008, from https://acc.dau.mil/oa

Weathersby, J.M. (2007, June). Open source software and the long road to sustainability within the US
DoD IT system. The DoD Software Tech News, 10(2), 20-23. Retrieved March 2008, from
https://www.softwaretechnews.com/stn_view.php?stn_id=42

Wheeler, D.A. (2007, June). Open source software (OSS) in US government acquisitions. The DoD
Software Tech News, 10(2), 7-13. Retrieved March 2008, from
https://www.softwaretechnews.com/stn_view.php?stn_id=42

Acknowledgments
The research described in this report has been supported by grants #0534771 from the

US National Science Foundation and the Acquisition Research Program at the Naval
Postgraduate School. No endorsement implied.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 245 -
=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ
=

=

2003 - 2008 Sponsored Research Topics

Acquisition Management

 Software Requirements for OA
 Managing Services Supply Chain
 Acquiring Combat Capability via Public-Private Partnerships (PPPs)
 Knowledge Value Added (KVA) + Real Options (RO) Applied to Shipyard

Planning Processes
 Portfolio Optimization via KVA + RO
 MOSA Contracting Implications
 Strategy for Defense Acquisition Research
 Spiral Development
 BCA: Contractor vs. Organic Growth

Contract Management

 USAF IT Commodity Council
 Contractors in 21st Century Combat Zone
 Joint Contingency Contracting
 Navy Contract Writing Guide
 Commodity Sourcing Strategies
 Past Performance in Source Selection
 USMC Contingency Contracting
 Transforming DoD Contract Closeout
 Model for Optimizing Contingency Contracting Planning and Execution

Financial Management

 PPPs and Government Financing
 Energy Saving Contracts/DoD Mobile Assets
 Capital Budgeting for DoD
 Financing DoD Budget via PPPs
 ROI of Information Warfare Systems
 Acquisitions via leasing: MPS case
 Special Termination Liability in MDAPs

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=ÅêÉ~íáåÖ=ëóåÉêÖó=Ñçê=áåÑçêãÉÇ=ÅÜ~åÖÉ
=

=

Human Resources

 Learning Management Systems
 Tuition Assistance
 Retention
 Indefinite Reenlistment
 Individual Augmentation

Logistics Management

 R-TOC Aegis Microwave Power Tubes
 Privatization-NOSL/NAWCI
 Army LOG MOD
 PBL (4)
 Contractors Supporting Military Operations
 RFID (4)
 Strategic Sourcing
 ASDS Product Support Analysis
 Analysis of LAV Depot Maintenance
 Diffusion/Variability on Vendor Performance Evaluation
 Optimizing CIWS Lifecycle Support (LCS)

Program Management

 Building Collaborative Capacity
 Knowledge, Responsibilities and Decision Rights in MDAPs
 KVA Applied to Aegis and SSDS
 Business Process Reengineering (BPR) for LCS Mission Module

Acquisition
 Terminating Your Own Program
 Collaborative IT Tools Leveraging Competence

A complete listing and electronic copies of published research are available on our
website: www.acquisitionresearch.org

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org

1

Emerging Issues in the
Acquisition of Open Source

Software

Walt Scacchi and Thomas Alspaugh
Institute for Software Research
University of California, Irvine
{wscacchi,alspaugh}@ics.uci.edu

2

Overview

• Background
• Understanding open software architecture

concepts
• How open source software (OSS) licenses

complicate architecture and acquisition
• Emerging requirements for Open

Architecture systems with OSS elements
• Conclusions

3

Background

• Goal: identify principles of software architecture and
open source software (OSS) licenses that mediate
open architecture (OA).

• OSS elements subject to different licenses can
facilitate or inhibit OA.

• DoD policies and initiatives encouraging OA with
OSS elements

• What additional requirements are needed to realize
OA strategies with OSS?

4

Background (continued)
• “Open is the new Correct”

– Overall system correctness depends on the
correctness of its components and how they are
interconnected.

– Testing/V&V and use determine correctness.
– However, not all OA incorporating OSS

components and interconnections will be open.
– OA using OSS elements creates new system

acquisition requirements

5

An Open Architecture?

6

Was that an Open Architecture?

7

Open Software Architecture Concepts
• Software source code components

– Standalone programs
– Libraries, frameworks, or middleware
– Inter-application script code
– Intra-application script code

• Executable software components
• Application program interfaces (APIs)
• Software connectors
• Configured system or sub-system

8

Example OA with
OSS elements

9

OSS License Mapping
Complications

10

Emerging Requirements
for OA with OSS

• How much openness required / desired?
• Contractor guidelines and incentives to

minimize OSS license obligations
• Determine restrictions on OA system from

OSS component, connector, configuration
licenses

11

Emerging Requirements
for OA with OSS

• Identify alternatives that still satisfy a
specific overall system architecture

• Scenarios to find license conflicts among
OSS components, connectors, configuration

• Identify / analyze OSS licensing obligations
that may block system redistribution

Alspaugh and Antón, “Scenario Support for Effective Requirements”
Information and Software Technology 50(3), 2008

12

Future Requirements
for OA with OSS

• Requirements / architecture interaction
• V&V for OSS and OA
• OSS evolution
• Trading off reliability vs. cost / flexibility
• Openness to warfighter modification or

participation

Diallo, Alspaugh, et al., “Toward Architecture Evaluation Through Ontology-based
Requirements-level Scenarios” Architecting Dependable Systems V, 2008

Diallo, Sim, and Alspaugh, "Case Study, Interrupted: The Paucity of Subject Systems
that Span the Requirements-Architecture Gap" WEASELTech 2007

13

Conclusions

• Acquisition goals of OSS and OA imply
additional, non-obvious requirements

• Guidance for program officers in avoiding
OSS pitfalls, achieving OSS benefits

• Guidelines and incentives for contractors in
producing OA with OSS

14

Acknowledgements

• Support provided by grants
– #0534771 from the National Science

Foundation
– Acquisition Research Program at NPS
– Center for Edge Power at NPS on behalf of

OASD (NII)/DoD.
• No endorsement implied

	NPS-AM-08-036.pdf
	NPS-AM-08-071

